Darwin’s Crayons: Genetic Algorithms for Coloring a Dynamic Graph

نویسنده

  • Cara Monical
چکیده

We studied the relative performance of genetic algorithms on coloring a dynamic graph for di↵erent graph and algorithm conditions. Graph coloring is a well-studied NP-complete problem with a wide range of applications in scheduling and assignment problems, while dynamic graphs are a natural way to model a diverse range of dynamic systems, from register allocation to mobile ad-hoc networks. Coloring a dynamic graph can be used for the online scheduling of conflicting tasks, when the tasks are not known beforehand. As genetic algorithms (GAs) have been shown to be e↵ective for graph coloring and are adaptable to dynamic environments, they are an promising choice for the dynamic graph coloring problem. We examined graphs of di↵erent sizes, edge densities, structures, and change rates, using di↵erent amounts of evolution between changes in the graph. For these graphs, we compared the performance of three algorithms: DSATUR, a standard graph coloring algorithm, on each time-step of the graph, a GA with a single population adapting to the changing graph, and a GA with a new population at each time-step of the graph. Finally, we present the impact of variation in these factors on the relative performance of the three algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

الگوریتم ژنتیک با جهش آشوبی هوشمند و ترکیب چند‌نقطه‌ای مکاشفه‌ای برای حل مسئله رنگ‌آمیزی گراف

Graph coloring is a way of coloring the vertices of a graph such that no two adjacent vertices have the same color. Graph coloring problem (GCP) is about finding the smallest number of colors needed to color a given graph. The smallest number of colors needed to color a graph G, is called its chromatic number. GCP is a well-known NP-hard problems and, therefore, heuristic algorithms are usually...

متن کامل

Solving a nurse rostering problem considering nurses preferences by graph theory approach

Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...

متن کامل

Just chromatic exellence in fuzzy graphs

A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...

متن کامل

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

Effective and Efficient Dynamic Graph Coloring

Graph coloring is a fundamental graph problem that is widely applied in a variety of applications. The aim of graph coloring is to minimize the number of colors used to color the vertices in a graph such that no two incident vertices have the same color. Existing solutions for graph coloring mainly focus on computing a good coloring for a static graph. However, since many real-world graphs are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013